
Team Members:  ​April Gustafson, Mason Leon, Matthew Sobkowski 
Project GitHub link: ​https://github.com/2020-F-CS6240/project-group10/tree/master 
 
Project Overview 
As a group, we were interested in focusing on spark usage for graph analytics. We chose to use a 
social network graph due to their growing influence in the world, and how widely used they are in a 
variety of industries. We specifically chose the all-pairs shortest path and non-trivial graph statistics 
tasks for this project.  
 
Input Data 
The input data we are working with is the ​LiveJournal social network dataset from Stanford​. LiveJournal 
is a free on-line community with almost 10 million members; a significant fraction of these members are 
highly active. (For example, roughly 300,000 update their content in any given 24-hour period.) 
LiveJournal allows members to maintain journals, individual and group blogs, and has friendship 
networks. This set has 4,847,571 nodes with 68,993,773 edges. 
 
Dataset Exploration  
Using Spark locally, we explored the LiveJournal dataset to: 

● Gain a better idea of the number of edges per node. 
● Verify that the number of id’s matched the number of nodes indicated in the dataset 

documentation. 
● Verify that the sequence of sorted id’s was consecutive and did not contain large gaps. 
● Insight into the dataset distribution. 

We proceeded to plot the in and out edge counts to 
visualize the results using bar charts and a basic 
histogram for distribution. This high-level evaluation 
gave us a good idea of the dataset. Because the 
lower user id’s appeared much more active than 
higher number user ids we set our filtering of the 
data in Spark to focus on the lower numbered user 
id’s. 
 
 
Local Spark Exploration code 
 
Jupyter Notebook code 
 
Exploratory graphs 
 
 
All-Pairs Shortest Path (Spark) 
Overview 
The goal of this task is to find the minimum distance from any node to all other nodes in the graph.  For 
a graph like the LiveJournal social network, where each node represents a user and each edge 
represents friendship/followership, the all-pairs shortest path (APSP) data would represent the 
minimum “degree of separation” between each user.  APSP can be used to determine “betweenness 
centrality”, which is a measure for quantifying the control of a human on the communication between 
other humans in a social network, or to determine graph “diameter”, which is a measure of network 
size. 
 

https://github.com/2020-F-CS6240/project-group10/tree/master
https://snap.stanford.edu/data/soc-LiveJournal1.html
https://github.com/2020-F-CS6240/project-group10/blob/master/src/main/scala/experiments/Stats.scala
https://github.com/2020-F-CS6240/project-group10/tree/master/notebooks
https://github.com/2020-F-CS6240/project-group10/tree/master/data/stats


There are a number of different algorithms to determine APSP.  For a graph with directed, unweighted 
edges, like the LiveJournal social network, APSP can be computed by using a BFS traversal to find the 
single-source shortest path (SSSP) for every source node.  
 
BFS is an iterative graph search algorithm where each iteration extends the set of known paths from 
the source by exploring all out-edges from newly visited nodes. For example, consider performing a 
BFS traversal on the graph below with node 2 as the source node.  
 

 
Repeating this with every node as the source node yields the shortest paths for all pairs of nodes.  We 
use this approach as the basis for our parallel processing algorithm. 
 
Pseudo-Code  
https://github.com/2020-F-CS6240/project-group10/tree/master/src/main/scala/ShortestPath 
 
Version 1 - |V| iterations 
The APSP via BFS approach is guaranteed to converge after |V| iterations.  Our first approach used 
this intuition to manage the iterative portion of the algorithm. 
graph = sc.textFile(input file) 

 .map { line => (line(0), line(1)) // Input file: (userID, friendID)  
  }.groupByKey() // Graph structure: (userId, List(friends)) 

.cache() // Graph structure is static →  persist or cache 
 

// Distances structure: (toId, (fromId, distance)) 
// This data will change each iteration 
// Set all distances for "first hop" to 1 
distances = graph.flatMap { case (fromId, adjList) => 
      adjList.map(adjId => (adjId, (fromId, edgeWeight))) 
} 
// Guaranteed to find the shortest path after k iterations when k = |V| 
for (iteration <- 0 to k) { 

// Join distances to graph to go to the next adjacent nodes 
// After join: (toId, (Option[adjList], (fromId, distance))) 

      distances = graph.rightOuterJoin(distances)   
        .flatMap(x => updateDistances(x)) // Pass distance to adj nodes (see below) 
        .reduceByKey((x, y) => min(x, y))  // Only keep min distance for any (to, from)  
        .map {((toId, fromId), distance) =>  

(toId, (fromId, distance))}  // Transform back to distances structure 
} 
-------Helper Method------- 
// This method passes along and accumulates distances from any node to its adjacent nodes.  The method 
takes a row of (toId, (adjList, (fromId, distance))) and expands it into a new row for every ID in the 
adjacency list with updated distances for each ID.  The data in the original row is maintained and 
returned with the new rows. 
updateDistances(row): 

row match { 
  case (toId, (Some(adjList), (fromId, distance))) => adjList.map(newId =>  

((newId, fromId), edgeWeight + distance)) ++ List(((toId, fromId), distance)) 

Iteration Paths from source 

1 2 → 0, distance = 1 
2 → 1, distance = 1 

2 2 → 0, distance = 1 
2 → 1, distance = 1 
2 → 0 → 1, distance = 2    // Not shortest to 1! 

Final result 2 → 0, distance = 1 
2 →  1, distance = 1 

https://github.com/2020-F-CS6240/project-group10/tree/master/src/main/scala/ShortestPath


   case (toId, (None, (fromId, distance))) => List(((toId, fromId), distance))} 
Version 2 - check for convergence 
In the APSP BFS approach, the program has converged if, for a given iteration, no new (path, distance) 
has been added.  Depending on the graph, determining convergence by this approach is vastly more 
efficient than running |V| iterations.  To implement this, we made a few changes in the distances data 
structure and the iterative computations. 
// Now distances has a different key structure: ((toId, fromId), distance)  
// Iterate until there are no updated distances in an iteration 
    while (numUpdated > 0) { // numUpdated == 0 means convergence! 
      temp = distances.map { case ((toId, fromId), distance) => (toId, (fromId, distance)) } 
        .leftOuterJoin(graph)  // Go to the next “hop” in the graph 
        .flatMap(x => updateDistances(x)) 
        .reduceByKey((x, y) => Math.min(x, y))  // Keep min distance for any (to, from) pair 
 

// Check if any new distances have been added 
numUpdated = temp.leftOuterJoin(distances)  // ((to, from), (newDist, Option[oldDist])) 

   .filter(oldDistance.isEmpty) 
   .count() 

// Reset updated distances 
  distances = temp 
    } 
Version 3 - Use same partitioner for graph and distances 
Since we are repeatedly joining the graph and distances data, we thought we would try to optimize the 
join by explicitly using the same partition on these two data structures.  This was our initial approach: 
    if (optimize) { 
      val graphPartitioner = graph.partitioner match { 
        case Some(p) => p 
        case None => new HashPartitioner(GraphRDD.partitions.length) 
      } 
      distances.partitionBy(graphPartitioner) 
    } 

We ran our program on AWS with this optimization in place.  However, we later realized, with this 
format, the distances data structure does not have the same key as the graph data structure (before we 
join, we map distances to have the same key structure as graph). 
Version 4 - Refactor distance key structure and use same partitioners 
We then changed the distances structure to have the same key structure as the graph when we 
assigned the partitioner, which required a bit of fiddling with the iterative computations: 

// distances format starts as (to, (from, distance)) to join with graph 
Version 5 - Simplify checking for new paths to determine convergence 
We were using a join between distances and temp (updated distances) to identify updated distances 
after each iteration and determine convergence.  However, in our unweighted graph, the first path (v, u) 
from any node u to any node v is guaranteed to be the shortest path, so there is no need to check if the 
distance for (v, u) has been updated after any iteration.  We just need to check if a new path has been 
added.  After running on AWS a few time, we realized that we could probably improve performance by 
finding the count difference between distances and temp instead of performing a join: 

numUpdated = temp.count() - distances.count() 
Version 6 - Partition temp structure with graph partitioner 
In version 4, we explicitly partitioned the distances structure with the graph structure to optimize the join 
between these two structures.  However, in each iteration, the distance structure is transformed into 
‘temp’ before joining with graphs again -  does it still have the partition we assigned it?  We decided to 
try resetting the partitioner in every iteration: 

distances = temp.map(x => (x.to, (x.from, x.distance))).partitionBy(graphPartitioner) 

 
Algorithm and Program Analysis 
The non-parallel version of SSSP on a directed, unweighted graph using BFS has a runtime complexity 
of O(|V| + |E|).  To compute APSP, SSSP must be computed once for each source node, which 
increases the runtime complexity to O(|V|​2 ​+ |V||E|).  For large graphs, like the LiveJournal social 



network, where |E| = 68993773 and |V| = 4847571, computing APSP is significantly complex.  Does our 
parallel program improve performance? 
 
While it is difficult to estimate the runtime in parallel, we can consider the amount of network traffic 
generated by our algorithm: 

 
We can also consider possible speedup, load balance, and scaling for different aspects of our program: 
updateDistances​ to expand paths 

- This computation is where parallel processing shows the most potential for improved 
performance over non-parallel computations.  The next “wave” from every node is being 
processed in parallel.  As the number of outgoing edges from each node increases, the amount 
of data processed in parallel increases.  If each node did not have very many outgoing edges 
(e.g. a binary tree), there probably would not be much gain from our parallel approach. 

- The key for this computation represents a distinct node.  Nodes with a greater number of 
adjacent nodes require greater computation time; therefore, load imbalance could arise if many 
nodes with large adjacency lists are partitioned to the same worker. 

- Since each key is a distinct node, scaling up with more machines could speed up this 
computation if the number of distinct nodes is greater than the number of machines.  
 

reduceByKey​ to only keep the minimum distance for any (to, from) pair in distances 
- This computation eliminates any non-minimum distances from any path (v, u) starting from node 

u and ending at node v.  In a non-distributed APSP BFS approach, this computation wouldn’t 
really be necessary because as soon a path from (v, u) is found, it is guaranteed to be the 
shortest and, while traversing the graph from u, it is feasible to keep track of the fact that v has 
already been visited from u and not visit it again.  In our implementation, this computation is 
necessary because we are not able to see that v has already been visited from u when 
expanding the path.  We need to investigate further to see if our parallel approach could be 
improved here. 

- The key for this computation represents a distinct path (v, u) starting from node u and ending at 
node v.  A greater number of updates in one iteration to a single path leads to greater 
computation time for that path; therefore, load imbalance could arise if many paths with a large 

Graph Stats |E| = ​68993773 |V| = ​4847571 Diameter = 16 

Data transferred from input 
file into ​graph 

O(|E|) 
 

Rows contained in 
distances 

O(|V|​2​) 

Data shuffled to expand 
graph 
 ​graph 
   .join(distances) 

O(|E| + |V|​2​) 
 
 

Version 4:  we believe this 
amount decreased when we 
used the same key type and 
partitioner for graph and 
distances (runtime 
decreased from version 3) 

Version 6 : we believe this 
amount decreased further 
by resetting the partitioner 
after every update to 
distances 
(runtime decreased from 
version 5) 

Data shuffled to identify 
newly discovered paths 
temp.join(distances) 

O(2|V|​2​)  Version 5:  No shuffling necessary! 

Number of iterations O(|V|) 
 
We know that the longest shortest path is 16.  So the full dataset should 
converge after 16 iterations. 
We weren’t sure if using a subset of the data would change this value, but using 
a simple filter=10,000 did require exactly 16 iterations. 



number of updates are partitioned to the same worker.  However, since this key is more 
fine-grained than the key for ‘updateDistances’, this load imbalance is less likely. 

- Since each key is a distinct path, scaling up with more machines could speed up this 
computation if the number of distinct paths is greater than the number of machines.  

 
Experiments 
Version 3, cluster size constant (4 workers + 1 master), varying simple filter 

 
Version 3, simple filter size constant (filter = 10,000), varying cluster size 

 
Cluster (7 workers + 1 master) and simple filter (filter = 10,000) constant, varying versions 

 
Each successive version demonstrated greater speedup, indicating that co-partitioning joined data 
structures does decrease runtime.  These data structures must have the same key type and the 
partitioner may need to be reassigned to a data structure after it undergoes a transformation. 

Results Sample 
https://github.com/2020-F-CS6240/project-group10/tree/master/results 

Filter Runtime 

Filter = 100 22:03:17 - 22:03:58 = ​00:00:41 

Filter = 10,000 22:15:41 - 02:01:25 = ​03:45:44 

Cluster Size Runtime 

Small cluster (4 workers + 1 master) 22:15:41 - 02:01:25 = ​03:45:44 

Large cluster (6 workers + 1 master) 15:02:30 - 18:01:11 = ​02:58:41 

Version Runtime 

Version 3 15:02:30 - 18:01:11 = ​02:58:41 

Version 4 01:20:09 - 03:59:49 =​ 02:39:40 

Version 5 11:16:03 - 13:40:24 = ​02:24:21 

Version 6 14:26:00 - 16:38:16 = ​02:12:16 

Results Sample from Version 1-3 Results Sample from Version 4-6 

((toId, fromId), distance) 
((1085,4397),5) 
((2552,8438),5) 
((3299,812),8) 
((896,9002),7) 
((765,7612),4) 

(toId, (fromId, distance)) 
(8477,(7865,7)) 
(8637,(184,7)) 
(2033,(8585,6)) 
(7600,(1218,6)) 
(2671,(371,5)) 
(3948,(2875,4)) 

https://github.com/2020-F-CS6240/project-group10/tree/master/results


Non-Trivial Graph Statistics (Spark) 
Overview 
The goal of this task is to find the diameter and largest cycle of a social network graph.  The diameter is 
defined as the longest path in the set of all-pairs shortest paths in the graph and is a common measure 
of network size.  In a social network graph, a small diameter would indicate a high degree of 
connectivity between members (no one person has too many degrees of separation from another). 
 
In addition, the largest cycle of the graph is the longest directed trail in which the only repeated vertices 
are the first and last vertices. Specifically, information changes can be observed when travelling from 
source user through the cycle, and ultimately back to the initial sender. In a more finely-grained 
scenario, cycles could be used to predict the evolution of a signed social network graph, where the 
signed aspect is either a positive or negative resemblance between two users. 
 
Pseudo-Code 
Diameter (found in APSP files) 
Since we already generated a dataset for all-pairs shortest paths in the LiveJournal network, finding the 
network diameter is a relatively straightforward top-K problem.  We can read in the APSP dataset and 
find the top distance for all of the shortest-paths that we identified. 
 
// Line of input: (toId, fromId, distance) 
val shortestPaths = sc.textFile(input shortest paths file) 

.map(line => ((toId, fromId), distance)) 
val diameter = shortestPaths.values.max 
 
Alternatively, we can compute the diameter while running APSP.  Since the diameter will equal the 
number of iterations performed to compute APSP, we instantiate a counter before starting iterations 
and increment it at the end of every iteration and save the accumulator value as the diameter output. 

 
Cycles of Length n 
https://github.com/2020-F-CS6240/project-group10/tree/master/src/main/scala/Graphs 
 
// "Hops" are the ways to get from a node to another node 
val hops = input.map { line => val nodes = line.split("\t") 
(nodes(0), nodes(1))  // (fromId, toId)} 
.filter(x => x._1.toInt < filter && x._2.toInt < filter) 
 
val rev = hops.map{x => (x._2, x._1)} 
// only keep “complete” edges, or in other words, edges with nodes that have outgoing // 
edges 
val complete = rev.leftOuterJoin(hops) 
  .filter(x => x._2._2.nonEmpty) 
  .map(node => (node._2._1, node._1)) 
  .distinct() 
  .cache() 
 
// use custom partitioner 
val graphPartitioner = complete.partitioner match {  case Some(p) => p 
  case None => new HashPartitioner(complete.partitions.length) 
} 
complete.partitionBy(graphPartitioner) 
 
var paths = complete.map { case (fromId, toId) => (toId, fromId) 
}.partitionBy(graphPartitioner)   
// List will be intermediate nodes 

https://github.com/2020-F-CS6240/project-group10/tree/master/src/main/scala/Graphs


 
for(_ <- 1 to iterations) { 
  pathSize += 1 
  // get all paths of size "pathSize" starting at "from" ending at "to" 
  paths = paths.join(complete) 
     .map { case (middleId, (fromId, toId)) => (toId, fromId)} 
  .distinct() 
// Count rows that are cycles 
  val cycles = paths.filter { case (toId, fromId) => fromId.equals(toId) } 
    .count() 
  if (cycles > 0) { 

totalCycles = cycles 
maxCycleSize = pathSize} 

  // Only keep rows that are NOT cycles (to avoid endlessly going in circles) 
  paths = paths.filter { case (toId, fromId) => !fromId.equals(toId) }} 

 
Algorithm and Program Analysis 
Diameter:​  We could keep track of diameter as max distance in every iteration of the APSP.  This 
would require a lookup to a global counter for every key in every iteration of APSP.  We believe that it 
would be more efficient to identify the diameter at the end of APSP with a single pass through the 
dataset. 
Cycles of length n:​ We decided to move off from the longest cycle problem because due to testing 
and research, many algorithms are of V*3 time, where V is the number of vertices. Our initial 
implementation had us tracking intermediate nodes as well, and although we filtered the data to a small 
amount of edges, the intermediate data would grow exponentially, leading us into memory errors on 
AWS, even if tinkering with memory limits 
 
Therefore, we decided to move on to a more generic problem, where the cycle length could be 
specified. This allowed us to not have to keep track of intermediates for each node, and thus, instead of 
limiting our data, we gave ourselves the opportunity to explore larger filter numbers, and specify more 
attainable cycle ranges. 
 
The algorithm itself is similar to triangles, with the key difference being instead of a static data →  path2 
→ triangle threshold, we loop the paths for a specified number of iterations before finding the closing 
edge. These iterations are specified in the program itself. Further optimizations were made such as a 
custom partitioner, as well as not only filtering on ID’s, but also on nodes with no outgoing edges. When 
comparing the original data to the filtered (with no max filter), we were able to remove around 2 million 
edges from the original dataset. Factoring in the size of join intermediate data, we found this to be a 
significant improvement. 
 
Experiments 
Cycles, cluster size constant (6 workers + 1 master), varying max-filter 

 
Cycles, simple filter size constant (filter = 30,000), varying cluster size 

MaxFilter Runtime 

20,000 3 min 

30,000 8 min 

50,000 32 min 

Cluster Size Runtime 



 
Results Sample 
Diameter​: ​https://github.com/2020-F-CS6240/project-group10/tree/master/results 
Input: (toUser, (fromUser, shortestDistance)) 

(1,(0,1)) 
(2,(0,1)) 
(2,(1,1)) 
(3,(0,2)) 
(3,(1,1)) 
(3,(2,1)) 

 
Output: 2 
 
Cycles​: ​https://github.com/2020-F-CS6240/project-group10/tree/master/results/cycleOutput 
Input: (fromUser toUser) 
1 2 
 
Output: Total Cycles with Length 4 is: 0 

 Max Cycle size is: 0 
 

Graph Visualization 
 
As an interesting experiment to better understand the graph, we utilized 
several methods developed throughout the project for processing the 
data into graph RDD and node edge count Data Frame representation. 
 
Using Spark, we serialized the graph to a standard XML-like format 
called ​GEXF ​for representing graphs. We then used graph visualization 
and network analysis tool ​Gephi​ to generate visual forms of the 
LiveJournal network from our ​GEXF file​.  
 
Spark GEXF Conversion Code 
 
The produced images may be found in the group repo 

Conclusion 
Implementing parallel graph algorithms and producing analysis on a real-world dataset provided us with 
better context and understanding for the concepts explored throughout the semester. Just like in 
industry, we were constrained by cost, time, and resources and therefore needed to evaluate how to 
plan a creative and iterative approach to processing large graph data sets to generate useful insight.  
 
In the All-Pairs Shortest Path exploration, our biggest takeaway was that co-partitioning datasets does 
improve speedup.  For the cycles exploration, we learned how to manage memory constraints and the 
importance of fine tuning job parameters.  Overall, working through the limitations of our program 
forced us to understand more about what’s happening “under the hood” in Spark when processing big 
data. 

Small cluster (4 workers + 1 master) 12 min 

Large cluster (6 workers + 1 master) 8 min 

https://github.com/2020-F-CS6240/project-group10/tree/master/results
https://github.com/2020-F-CS6240/project-group10/tree/master/results/cycleOutput
https://gephi.org/gexf/format/
https://gephi.org/
https://github.com/2020-F-CS6240/project-group10/blob/master/data/gephi/soc-LiveJournal1_Filtered10000.gexf
https://github.com/2020-F-CS6240/project-group10/blob/master/src/main/scala/experiments/GexfConvert.scala
https://github.com/2020-F-CS6240/project-group10/tree/master/data/gephi

